Shakeable Dynamo Part 4: Building the bridge rectifier


[ad#Google links]

Shakeable Dynamo Part 1: Why bother?
Shakeable Dynamo Part 2: Building the initial dynamo
Shakeable Dynamo Part 3: How electromagnetic induction works

Lets start off by securing our coils on our alternator by removing the cardboard guides and then getting some clingfilm and wrapping a piece around your coils and then wrap a bit of tape around it to secure it all. Now we know it works, we don’t want to risk our coils moving or our connections breaking.

What’s a rectifier?


So what is a rectifier? A rectifier converts AC current to DC current, so we convert the current that changes direction to flowing in one direction. That means we’ll then get the full benefit of the electricity we’re creating rather than only half of it. Rectifiers use a series of diodes to achieve this. A diode (pictured left) is essentially a valve, it lets the flow of electricity through only one way, shown by the green arrow in my diagram, the silver band indicates the cathodeĀ  (-). By arranging a few of these together we can then convert our current by forcing current to flow one way.

How does a bridge rectifier work?

In the diagrams to the right, the flow of electricity is shown, red arrows for positive, black for negative. In the top diagram the current flows across the top diode from the alternator to the output, negative is flowing across the bottom from the green wire, back through the diode to the alternator. When the magnet changes direction and the current reverses, the bottom diagram shows that the flow is blocked and can only flow to the same positive output. So no matter which way the magnets move or whichever direction the current moves in the diodes always divert the flow to the same points.

How to build a bridge rectifier circuit

With that understood we can then plug in our hook up wire from our alternator into a breadboard to build the basic rectifier circuit which we can then check that it works and solder it to our leads. You can see in the series of photos below that we take the 2 leads from our alternator, connect them to the diodes as per the circuit diagram, then we attach another 2 leads to the 2 remaining ‘corners’ of our bridge rectifier – and remember these now are direct current and one lead will be positive and the other negative so it will matter which way you attach the LED or any other component.

Shakeable dynamo: Build a bridge rectifier

Cut and solder the diodes and leads together.

Shakeable dynamo: Solder the bridge rectifier

Then ‘wrap’ the circuit over the end of the tube.

Shakeable dynamo: Trim and wrap the rectifier around the end of the biro

And finally secure it into place with some electrical tape.

Shakeable dynamo: Tape over the connections

You can see that I’ve also soldered on an LED to the new DC power supply, also remember to mark out which wire is positive and which is negative. Here’s the final result again working…

Coming up – improving the alternator and charging a battery with it…


  • Here’s a link to a full circuit with charging:

    • Thanks cj

  • I am thinking through an idea, but need a little help. I am considering having 3 coils beside each other, single magnet passing each in succession. I want a single output of power, and I was thinking that each coil could produce it’s own pulse to be stored, less voltage but more amperage. my question: Would I need a rectifier on each coil circuit outputting to a common set of + – poles, or could each coil be connected in parallel to a single rectifier?

  • A quick thought, try using magnets at each end of the tube of opposing polarity to your dirve magnet. They will act as springs and allow a higher frequency with less effort.

Join the Discussion

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>